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1. Introduction

A recent study by Gorman and Singhal [1] outlined the vibration analysis of stepped cantilever
plates using a superposition method. Two- and three-step plates were discussed and limited
tabular results were given. The current study was partially motivated as a result of studying the
work of Gorman and Singhal [1]. The cantilevered plate has been studied by several researchers
and there are sufficient analytical results in the literature to verify a numerical analysis of plate
vibration. In this report the finite element method of analysis is used to extend the study of
cantilevered stepped plates to include moderately thick plates. First order shear deformation
effects are included using the Mindlin plate formulation. Concepts that are required for Mindlin
plate theory have been given by Reismann [2] and the development of the corresponding finite
element concepts has been sufficiently discussed by Reddy [3] and will not be restated in this note.

Vibration results for constant thickness cantilevered plates using Mindlin plate theory have
been given by Liew et al. [4]. The finite element results reported here can be verified by comparison
with Gorman and Singhal [1], Liew et al. [4] and Gorman [5]. Hull and Buchanan [6] have given a
brief history of contributions to stepped plate theory and vibration results for moderately thick
plates, but that work focused on simply supported and clamped square plates. An application for
stepped cantilevered plate analysis has been discussed by Li [7–9]. Li [7] used a cantilevered beam
analogy to study the behavior of shear-wall type buildings. Vibration of non-uniform cantilevered
plates is studied [8,9] with application to the analysis of shear walls.

Additionally, it would appear that there are no results in the literature for stepped cantilevered
plates using a first order shear deformation theory. In this letter, a finite element based on Mindlin
plate theory including the first order shear deformation, MIN6, developed by Liu and Riggs
[10,11], will be used for the vibration analysis of stepped cantilevered plates. However, before
discussing results for stepped Mindlin plates, the agreement of the finite element analysis with
existing cantilevered plate (thin and moderately thick) vibration studies will be verified and
documented. Following that, new numerical results of frequencies and mode shapes for stepped
Mindlin plates using the MIN6 element will be tabulated and presented graphically.
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2. Numerical model

MIN6 is a higher order, six-node triangular, anisoparametric Mindlin plate element with cubic
variation for transverse displacement and quadratic variation for rotational displacements. More
details of the derivation for this element can be found in Refs. [10,11]. Because of its excellent
performances, that is neither shear locking nor excessive stiffness in the thin limit, the MIN6
element was used to model isotropic thin and moderately thick stepped cantilevered plates for free
vibration analysis in this paper. Vibration results using MIN6 for span-thickness ratio L=t ¼ 1000
(thin plate) to L=t ¼ 5 (moderately thick plate) were compared with results from Gormann [6]
(based on thin plate theory) and Liew (based on Mindlin plate theory) as well. MIN6 gave
satisfactory results for both thin and moderately thick plates.

3. Validation and numerical results

The frequencies given by Liew et al. [4] for a square cantilevered plate using Mindlin plate
theory compare favorably with Table 4.1 of Gorman [5] where frequencies are based upon
classical plate theory. The frequency of Ref. [4] is computed using n ¼ 0:3 and non-dimensional
plate thickness of 0.001 where the frequency is non-dimensional with respect to the plate
thickness. Gorman [5] used n ¼ 0:333 and mass per unit area, which is equivalent to using a unit
non-dimensional plate thickness. It follows that the frequency of Ref. [5] multiplied by p2 gives
3.474, which compares with 3.459 of Ref. [4], indicating good agreement (less than 0.5%) even
though there is a small difference in the Poisson ratio for these results. The solution using the
element of this paper is 3.463 with n ¼ 0:333:

Two verification tests for cantilevered uniform thickness plates for the MIN6 element have been
performed. First, the non-dimensional frequency l ¼ ðoL2=p2Þðrt=DÞ1=2; (where o is the natural
frequency and r is the mass per unit volume) of thin (L=t ¼ 1000) and moderately thick (L=t ¼ 20
and 10) square cantilever Mindlin isotropic plates are obtained and compared with Liew’s results
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Table 1

Comparison between MIN6 and Liew et al. [4] results for non-dimensional frequency l ¼ ðoL2=p2Þðrt=DÞ1=2 for a

square cantilever Mindlin isotropic plate with different span-thickness ratios

Mode number L=t ¼ 1000 L=t ¼ 20 L=t ¼ 10

MIN6 Liew et al. [4] MIN6 Liew et al. [4] MIN6 Liew et al. [4]

1 0.352 0.352 0.351 0.350 0.348 0.348

2 0.862 0.862 0.847 0.844 0.819 0.816

3 2.158 2.157 2.123 2.121 2.037 2.034

4 2.758 2.756 2.704 2.698 2.587 2.582

5 3.140 3.136 3.051 3.039 2.870 2.860

6 5.503 5.490 5.274 5.246 4.833 4.811

7 6.220 6.206 5.999 5.989 5.489 5.477

8 6.513 6.499 6.287 6.270 5.788 5.772
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[4] in Table 1. The Poisson ratio is 0.3. The agreement between the frequencies computed and
Liew’s frequencies is within 0.5% or less. Secondly, the comparison shown in Table 2 is the
non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 with n ¼ 0:333 between MIN6 and Table 4.1 of
Gormann [5] for a thin (L=t ¼ 1000) cantilever plate of aspect ratio 3 with uniform thickness
(Fig. 1). The results of Table 2 show good agreement.

Additionally, to validate the accuracy of the MIN6 results for stepped cantilevered plates,
the non-dimensional frequencies (l ¼ oL2ðrt=DÞ1=2) are determined for two cases with the
same span-thickness ratio L=t ¼ 24 for the thickest segment. One is three segments with
aspect ratio 1 of two-step discontinuities in thickness shown in Fig. 2 and the other one is
four segments with aspect ratio 3/4 and three-step discontinuities in thickness shown in Fig. 3.
The solutions are compared to the Tables 1 and 2 of Gorman and Singhal [1] and are
given in Tables 3 and 4. The results demonstrate a very close agreement for both cases. In
Table 5, the comparison of the first 6 frequencies (Hz) between MIN6 and Table 3 of Gorman
and Singhal [1] is provided. The comparison shows that the computed frequencies and
Gorman and Singhal’s experimental measured frequencies are in very close agreement.
Table 5 also shows that all numerical frequencies of MIN6 are lower than those measured
experimentally while Gorman and Singhal’s are higher. The plate was assumed to be
16� 12 in with thickness of 0.5, 0.375, 0.25, and 0.125 in thickness. Fig. 14 of Ref. [1] indicates
that actual dimensions might be slightly different. Young’s modulus was used as E ¼ 107 psi with
n ¼ 0:33:

New results using the MIN6 element for cantilever plates with different aspect ratios
and composed of different segments of equal geometry but of different thickness are given in
Tables 6–9. The non-dimensional frequency l ¼ oL2=ðrt=DÞ1=2 has been computed for the plates
shown in Figs. 1–4. The Poisson ratio is 0.333. The first sixteen free vibration modes are tabulated
in Tables 6–9 with different L=t ratios (L=t ¼ 30; 24, 10, 5) for four different stepped plates. In
every case the L=t ratio corresponds to the thickest segment.
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Table 2

Comparison between MIN6 and Gorman [5] non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a thin cantilever plate

with aspect ratio 3 and uniform thickness

Mode number L=t ¼ 1000

MIN6 Gorman [5]

1 31.575 31.473

2 39.472 39.312

3 61.064 60.642

4 97.688 96.57

5 153.19 150.57

6 199.47 197.37

7 207.08 204.21

8 234.34 228.87

9 243.37 237.15

10 297.71 288.90
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Fig. 1. Cantilever plate with aspect ratio 3.

Fig. 2. Square cantilever plate of three segments of equal width with different thickness.
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Computed mode shapes for the plate with three discontinuities in thickness are shown in Fig. 5
and correspond to L=t ¼ 24: Liew et al. [4] show the first eight mode shapes for a square plate
with L=t ¼ 0:1: The first three mode shapes are the same, but modes 4 and 5 are interchanged.
Mode 6, 7 and 8 of Ref. [4] correspond to 8, 6 and 7 of Fig. 5. There is an effect caused by the
different aspect ratio and the step discontinuities.
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Fig. 3. Cantilever plate with aspect ratio 3/4 of four segments of equal width with different thickness.

Table 3

Comparison between MIN6 and Gorman and Singhal [1] non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a square

cantilever Mindlin isotropic plate with two-step discontinuities in thickness

Mode number Type L=t ¼ 24

MIN6 Gorman and Singhal [1]

1 Sym 4.129 4.132

2 Antisym 7.545 7.597

3 Sym 16.43 16.51

4 Antisym 18.64 18.76
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Table 5

Comparison between finite element MIN6s results and Gorman and Singhal [1] theoretical and experimentally

measured free vibration frequencies for a plate with three-step discontinuities in thickness

Mode number Type MIN6 frequency (Hz) Gorman and Singhal [1]

Theoretical frequency (Hz) Experimental frequency (Hz)

1 Sym 86.746 85.80 86.7

2 Antisym 164.17 167.0 166.0

3 Sym 260.76 278.2 269.0

4 Antisym 360.76 385.4 374.0

5 Sym 375.62 399.6 393.7

6 Sym 591.29 633.2 611.2

Table 4

Comparison between MIN6 and Gorman and Singhal [1] non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a cantilever

Mindlin isotropic plate of aspect ratio 3/4 with three-step discontinuities in thickness

Mode number Type L=t ¼ 24

MIN6 Gorman and Singhal [1]

1 Sym 2.573 2.572

2 Antisym 4.858 4.877

3 Sym 7.734 7.732

4 Antisym 10.69 10.72

5 Sym 11.12 11.14

6 Sym 17.57 17.58

Table 6

Non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a cantilever Mindlin isotropic plate of aspect ratio 3 with different

span-thickness ratios (Fig. 1)

Mode number MIN6

L=t ¼ 30 L=t ¼ 24 L=t ¼ 10 L=t ¼ 5

1 31.239 31.073 29.225 24.774

2 38.691 38.343 34.980 28.407

3 59.089 58.257 50.940 39.143

4 93.548 91.881 78.037 57.666

5 145.15 141.98 116.45 80.343

6 187.42 181.89 137.23 85.763

7 193.88 187.96 141.33 87.267

8 218.79 212.72 160.53 100.00

9 225.21 217.41 166.41 109.27

10 270.88 260.23 188.69 118.73

11 304.43 294.07 218.16 135.10

12 330.59 316.11 226.69 141.41

13 399.53 379.76 262.70 157.36

14 418.36 399.44 280.90 159.31

15 487.02 460.38 306.31 167.07

16 515.65 483.07 311.47 170.57
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Table 7

Non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a cantilever Mindlin isotropic plate of aspect ratio 3/2 with one-step

discontinuities in thickness and with different span-thickness ratios (Fig. 4)

Mode number MIN6

L=t ¼ 30 L=t ¼ 24 L=t ¼ 10 L=t ¼ 5

1 9.2946 9.2809 9.1327 8.6970

2 13.045 12.998 12.565 11.597

3 23.660 23.530 22.389 20.084

4 33.086 32.943 31.314 27.165

5 38.727 38.478 35.956 30.400

6 43.307 43.057 40.744 35.788

7 56.776 56.247 51.185 41.510

8 71.569 71.066 66.379 56.342

9 85.730 84.703 75.338 58.789

10 96.946 95.888 84.807 63.657

11 101.22 100.06 88.344 66.487

12 111.23 110.19 100.22 74.541

13 117.13 115.50 100.55 81.608

14 129.59 127.76 111.39 83.924

15 146.16 143.78 122.72 90.236

16 158.33 156.58 139.32 98.721

Table 8

Non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a square cantilever Mindlin isotropic plate with two-step

discontinuities in thickness and with different span-thickness ratios (Fig. 2)

Mode number MIN6

L=t ¼ 30 L=t ¼ 24 L=t ¼ 10 L=t ¼ 5

1 4.1331 4.1293 4.0917 3.9860

2 7.5658 7.5450 7.3549 6.9321

3 16.472 16.426 15.946 14.678

4 18.695 18.638 18.074 16.710

5 21.809 21.722 20.828 18.644

6 36.669 36.452 34.324 29.709

7 38.406 38.246 36.655 32.827

8 41.811 41.603 39.251 33.470

9 47.863 47.561 44.355 37.200

10 63.315 62.852 58.243 48.178

11 65.734 65.171 59.520 48.495

12 68.572 68.154 64.062 54.858

13 86.219 85.382 76.588 59.315

14 90.479 89.505 79.717 61.399

15 96.432 95.348 85.012 66.194

16 102.26 101.27 91.307 71.073
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Table 9

Non-dimensional frequency l ¼ oL2ðrt=DÞ1=2 for a cantilever Mindlin isotropic plate of aspect ratio 3/4 with three-step

discontinuities in thickness and with different span-thickness ratios (Fig. 3)

Mode number MIN6

L=t ¼ 30 L=t ¼ 24 L=t ¼ 10 L=t ¼ 5

1 2.5745 2.5729 2.5584 2.5203

2 4.8667 4.8580 4.7792 4.6094

3 7.7420 7.7345 7.6526 7.4062

4 10.707 10.685 10.463 9.9106

5 11.142 11.121 10.927 10.499

6 17.574 17.540 17.148 16.004

7 20.608 20.550 19.985 18.622

8 21.118 21.065 20.515 18.947

9 21.939 21.883 21.334 20.159

10 34.228 34.073 32.506 28.862

11 35.385 35.266 33.904 30.033

12 36.633 36.522 35.480 32.706

13 38.214 38.081 36.677 33.245

14 40.516 40.336 38.424 34.214

15 53.695 53.388 50.207 43.006

16 55.452 55.249 53.148 46.152

Fig. 4. Cantilever plate with aspect ratio 3/2 of two segments of equal width with different thickness.
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4. Conclusions

A new high order, six-node triangular, anisoparametric Mindlin plate finite element has been
employed to study the vibration of stepped thickness cantilevered plates. Vibration results were
compared and verified with a uniform thickness Mindlin plate analysis and a stepped thickness
thin plate analysis. New results were tabulated for a variety of moderately thick cantilevered
plates with different step discontinuities. Typical mode shapes were depicted as three-dimensional
contour plats.

References

[1] D.J. Gorman, R. Singhal, Free vibration analysis of cantilever plates with step discontinuities in properties by the

method of superposition, Journal of Sound and Vibration 253 (2002) 631–652, doi: 10.1006/jsvi. 2001.4067.

[2] H. Reismann, Elastic Plates Theory and Application, Wiley, New York, 1988.

[3] J.N. Reddy, An Introduction to the Finite Element Method, 2nd Edition, McGraw-Hill, New York, 1993.

[4] K.M. Liew, K.C. Hung, M.K. Lim, Vibration of Mindlin plates using boundary characteristic orthogonal

polynomials, Journal of Sound and Vibration 182 (1995) 77–90.

[5] D.J. Gorman, Free Vibration Analysis of Rectangular Plates, Elsevier, New York, 1982.

ARTICLE IN PRESS

Fig. 5. Mode shapes for a cantilever plate with aspect ratio 3/4 of three step discontinuities and L=t ¼ 24 (see Table 9).

Y.J. Liu, G.R. Buchanan / Journal of Sound and Vibration 271 (2004) 1083–1092 1091



[6] P.V. Hull, G.R. Buchanan, Vibration of moderately thick square orthotropic stepped thickness plates, Applied

Acoustics 64 (2003) 753–763.

[7] Q.S. Li, Flexural free vibration of cantilevered structures of variable stiffness and mass, Structural Engineering and

Mechanics 8 (1999) 243–256.

[8] Q.S. Li, Free vibration of elastically restrained flexural-shear plates with varying cross-section, Journal of Sound

and Vibration 235 (2000) 63–85, doi:10.1006/jsvi.2000.2917.

[9] Q.S. Li, Vibratory characteristics of multistep non-uniform orthotropic shear plates with line spring supports and

line masses, Journal of the Acoustical Society of America 110 (2001) 1360–1370.

[10] Y.J. Liu, H.R. Riggs, Development of the MIN-N family of triangular anisoparametric Mindlin plate elements,

Manoa Research Report UHM/CE/2002-01, University of Hawaii, 2002, 126pp.

[11] Y.J. Liu, Development of the MIN-N Family of Triangular Anisoparametric Mindlin Plate Elements, Manoa

Dissertation, University of Hawaii, 2002.

ARTICLE IN PRESS

Y.J. Liu, G.R. Buchanan / Journal of Sound and Vibration 271 (2004) 1083–10921092


	Free vibration of stepped cantilever Mindlin plates
	Introduction
	Numerical model
	Validation and numerical results
	Conclusions
	References


